Внимание! Studlandia не продает дипломы, аттестаты и иные документы об образовании. Наши специалисты оказывают услуги консультирования и помощи в написании студенческих работ: в сборе информации, ее обработке, структурировании и оформления работы в соответствии с ГОСТом. Все услуги на сайте предоставляются исключительно в рамках законодательства РФ.
Нужна индивидуальная работа?
Подберем литературу
Поможем справиться с любым заданием
Подготовим презентацию и речь
Оформим готовую работу
Узнать стоимость своей работы
Дарим 200 руб.
на первый
заказ

Решение задач на тему: Основные задачи термохимии. Чем обусловлен тепловой эффект реакции

Купить за 100 руб.
Страниц
14
Размер файла
47.56 КБ
Просмотров
56
Покупок
0
Термохимия, раздел химической термодинамики, включающий определение теплового эффекта реакции и установление его зависимости от физико-химических параметров. В задачу термохимии входит также измерение

Введение

А чем, собственно говоря, определяется изменение теплового эффекта реакции.

Процесс образования растворов на молекулярном уровне можно представить следующим образом. Каждая группа молекул чистого вещества должна сначала перестроиться таким образом, чтобы молекулы были удалены друг от друга на расстояния, соответствующие конечной концентрации раствора. (Например, в разбавленном растворе метанола в воде молекулы метанола очень удалены друг от друга, а молекулы воды находятся почти так же близко друг к другу, как в чистой воде.) Далее системы с удаленными молекулами должны сблизиться, образовав раствор конечной плотности. Сначала индивидуальные вещества должны поглотить энергию, чтобы произошло разделение частиц; однако при сближении частиц "раздвинутых" систем при образовании раствора энергия выделяется. Смешение частиц увеличивает статический "беспорядок" системы, что сопровождается увеличением энтропии.

Для процессов растворения характерна склонность к самопроизвольному протеканию к отрицательному изменению энергии Гиббса в результате смешивания частиц растворителя и растворенного вещества.

Основные различия в поведении растворов зависят от баланса выделяемой и поглощаемой энергии, связанной с изменениями межчастичных расстояний. Величины Н для процессов растворения отличаются друг от друга. Образование раствора является экзотермическим процессом (изменение энтальпии отрицательно), если при смешении частиц освобождается больше энергии, чем необходимо для первоначального разделения частиц. Если же для разделения деления частиц требуется больше энергии, чем освобождается при смешении, процесс растворения - эндотермичен (изменение энтальпии положительно). Поскольку энтальпийная функция дает вклад в изменение энергии Гиббса G=Н-ТS, можно ожидать, что именно для эндотермического процесса наиболее вероятна ограниченная растворимость; это в действительности подтверждается термодинамическими измерениями. Однако на молекулярном уровне эндотермический ход процесса растворения обусловлен тем, что однородные частицы в чистых жидкостях притягивают друг друга в смеси в среднем сильнее по сравнению с разнородными. Следовательно, для разделения однородных частиц в систему необходимо ввести больше энергии, чем выделится при сближении разнородных частиц в процессе смешения.

Приведенные рассуждения включают ряд допущений, в действительности поведение растворов часто значительно сложнее. Например, конечный раствор представляет собой систему с совершенно случайным распределением частиц, при рассмотрении которой была исключена возможность существования в растворе некоторой упорядоченной структуры. Если наличие упорядоченной структуры вносит свой вклад в образование раствора, то изменение энтропии будет иметь меньшее положительное значение, которое трудно поддается анализу. Тем не менее корреляция положительных отклонений от поведения идеальных растворов и ограниченной растворимости с энергиями притяжения между однородными частицами является достаточно хорошим первым приближением.

Образование раствора может продолжаться до тех пор, пока химические потенциалы компонентов заметно понизятся при переходе в раствор. Теоретическая модель процесса растворения объясняет понижение химического потенциала как результат разупорядочения при смешении частиц и влияния энергетических эффектов за счет притяжения между частицами. Если энергия притяжения между однородными частицами больше энергии притяжения между разнородными частицами, то снижение химического потенциала велико только для очень разбавленных растворов, а затем становится незначительным. Тогда можно предсказать, будут ли два вещества обладать высокой или низкой взаимной растворимостью; для этого необходимо только оценить степень притяжения между однородными частицами.

Теплоты испарения служат удобной и достаточно достоверной мерой энергии притяжения, хотя следует иметь в виду вклады других факторов, таких, как размеры молекул и специфические взаимодействия между частицами. В общем, два компонента будут обладать ограниченной взаимной растворимостью, если один из них характеризуется значительно большей теплотой испарения по сравнению с другим.

При смешении двух жидкостей могут наблюдаться всевозможные градации взаимной растворимости: от практически полной нерастворимости друг в друге (например, ртуть и вода) до смешения в любых соотношениях с образованием однородного раствора (например, этанол и вода). Промежуточное положение занимает смесь ограниченной взаимной растворимости. Смесь жидкостей А и В (например, анилин и вода) разделяется после взбалтывания на два слоя: насыщенный раствор А в В и насыщенный раствор В в А. Однако и в этом случае могут существовать области температуры и состава, в которых компоненты А и В образуют однородную смесь.

Термохимические изменения

Ввиду разнообразия в поведении растворы классифицируют в соответствии с их термодинамическими свойствами. С этой точки зрения различают идеальные и неидеальные растворы. Для большинства физико-химических расчетов необходимо знать теплоемкости веществ, участвующих в процессе, тепловые эффекты процессов растворения, фазовых превращений и химических реакций. Эти величины можно измерить экспериментально. При температурах, близких к комнатной (20-50оС), широко применяется калориметрический метод.

При калориметрических опытах величина и знак теплового эффекта Q процесса определяются по изменению температуры калориметра t:

где mi - масса исследуемого вещества, калориметра и вспомогательных устройств (мешалки, ампулы, термометра); с - удельные теплоемкости исследуемого вещества, калориметра и вспомогательных устройств; с - суммарная теплоемкость калориметрической системы. Уравнение (1) может быть записано

Q=(К+m1c1)t

где К - константа калориметра, то есть теплоемкость частей калориметра и вспомогательных устройств, участвующих в теплообмене, Дж/К; с1 - теплоемкость содержимого калориметра; t - изменение температуры процесса, протекающего в условиях отсутствия теплообмена калориметра с окружающей средой.

Калориметр с изотермической оболочкой (диатермический) позволяет учесть теплообмен его с окружающей средой, что дает возможность вычислить изменение температуры t, соответствующее опыту без теплообмена.

Теплоемкость систему С называют производную dQ/dТ. Теплоемкость газов и жидкостей зависит от температуры, а теплоемкость твердых веществ при средних и высоких температурах практически от нее не зависит. При расчетах часто использую теплоемкость.

Средней теплоемкостью однородного тела называют отношение подведенной теплоты к повышению температуры:

Средняя теплоемкость зависит от интервала температур (Т2 - Т1). Зависимость между истинной и средней теплоемкостями выражается уравнением

При Т5о даже на совершенных калориметрах (при измерении с точностью 0,05%) не удается установить различия между истинной и средней теплоемкостью. Поэтому теплоемкость, определенную в результате изменения температуры калориметра на 2-3о, принимают за истинную и относят ее к температуре (Т2+Т1)/2. Теплоемкость однородного тела зависит от его массы:

С=сm или ,

где удельная теплоемкость вещества; m - масса вещества. Если масса равна молярной или атомной массе, то теплоемкость будет соответственно молярной или атомной. Если во время опыта давление в калориметрической системе остается постоянным (в калориметрах открытого типа оно равно атмосферному), то тепловой эффект процесса при постоянном давлении будет Qр, а теплоемкость Ср. При термохимических изменениях процессам, сопровождающимся выделением теплоты (экзотермическим процессам), приписывается положительный знак. При выделении системной теплоты ее энтальпия убывает. Откуда Qр=-Н. Если в уравнениях тепловой эффект обозначен Q или q, то следует применять термохимическую систему знаков.

Оглавление

- Основные задачи термохимии

- Чем обусловлен тепловой эффект реакции

- Калориметрическая установка

- Вычисление t

- Основной источник погрешности в результатах калориметрических опытов

- Определение удельной теплоты растворения соли

- Методики определения удельной теплоты растворения соли

- Основные задачи термохимии

Как купить готовую работу?
Авторизоваться
или зарегистрироваться
в сервисе
Оплатить работу
удобным
способом
После оплаты
вы получите ссылку
на скачивание
Страниц
14
Размер файла
47.56 КБ
Просмотров
267
Покупок
0
Основные задачи термохимии. Чем обусловлен тепловой эффект реакции
Купить за 100 руб.
Похожие работы
Сумма к оплате
500 руб.
Купить
Заказать
индивидуальную работу
Гарантия 21 день
Работа 100% по ваши требованиям
от 1 000 руб.
Заказать
Прочие работы по предмету
Сумма к оплате
500 руб.
Купить
Заказать
индивидуальную работу
Гарантия 21 день
Работа 100% по ваши требованиям
от 1 000 руб.
Заказать
103 972 студента обратились
к нам за прошлый год
1953 оценок
среднее 4.2 из 5
Александр Спасибо большое за работу.
uzinskayaantonina Прекрасный эксперт, все очень хорошо сделала, умничка каких мало, были проблемы с самим сайтом (некорректно работал...
Михаил Спасибо большое за доклад! Все выполнено в срок. Доклад был принят и одобрен.
Михаил Очень долго искала эксперта, который сможет выполнить работу. Наконец-то нашла. Работа выполнена в срок, все,как...
Юлия работа выполнена отлично, раньше срока, недочётов не обнаружено!
Юлия Работа выполнена качественно и в указанный срок
Ярослава Эксперта рекомендую !!!! Все четко и оперативно. Спасибо большое за помощь!Буду обращаться еще.
Ярослава Благодарю за отличную курсовую работу! Хороший эксперт, рекомендую!
Марина Хорошая и быстрая работа, доработки выполнялись в кратчайшие сроки! Огромной спасибо Марине за помощь!!! Очень...
Мария Благодарю за работу, замечаний нет!

Рассчитай стоимость работы через Telegram